
@nikhilwanpal | NikhilWanpal

Understanding
Microservices: Exploding a
Monolith

Nikhil Wanpal

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Today we will

● Part I:
○ Software Evolution in older architectures
○ The philosophy

● Part II:
○ Story of MyKart
○ Case studies
○ The Revolt

● Part III:
○ The Evolution

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Microservices and Scary Terminologies
● Continuous Integration
● Continuous Delivery
● Continuous

Deployment
● DevOps
● NoOps
● SRE
● Infrastructure As Code
● Containerization
● Dockerization
● Container

Orchestration
Framework

● Private, Public and
Hybrid Clouds

● Central Authentication
Systems

● Vaults / Secret
Managers

● Fault Tolerance
● Self Healing
● Auto Scaling
● Eventual Consistency
● Event Sourcing
● Stateless APIs
● Contract Testing
● Conway’s Law
● Agile
● 2 Pizza Teams

● Monolith
● Service Registry
● Service Discovery
● Service Gateway
● Distributed Tracing
● Central Configuration

Service
● Log Aggregation

Service
● Distributed Monitoring
● Circuit Breakers
● Service Discovery

Away REST
● Client Side Load

Balancing

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

1 Tier application

Client
side

Older Problems and our solutions

Application code Data storage

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Client side

Database

Server side

Older Problems and our solutions

2 Tier application

Presentation Business
Logic

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Older Problems and our solutions

3 Tier application

Presentation
Business
Logic

Client side

Database

Server side

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Older Problems and our solutions

3 Tier application

Presentation

Client side Server side

Business Logic

 Database

Business Logic

Model View Controller Data
storage

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Older Problems and our solutions

3 Tier application

Client side

Model View Controller Data
storage

Business Logic

Server side

Model View Controller Data
storage

Query
Executor Data Dict Storage Mgt

(InnoDB)
DatabaseMonolith
(3 1-Tier applications)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

A Monolith (In it’s all glory)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

A Monolith: The Story of MyKart

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

What is wrong with a monolith?
● Nothing!
● Perfectly stable, usable, battle tested for applications of all sizes.

● Being monolith:
○ Design & technology applies to all layers
○ Developed as a whole
○ Deployed & scaled as a whole

● The nature of monolith is the problem as the application and team grows.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Load and spikes

● UX Redesign

● New integration on backend

● Framework or library upgrades

● Different teams’ (& Business) technology demands

● Business and application size

Case Studies

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

A revolt!
● I want my team (my architect, UX,

devs, testers and DBA) to build our
own ‘functionally separate’ part of
the system.

● We work at own
○ Pace, Development
○ Technology, Dependencies
○ Release cycle, Deployments
○ Uptime etc.

● We will promise to keep API.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

What does that change?
● Technically, not much!
● With preparation and planning, they make do with:

○ Static IP and single instance of the Shipping Service load-balancer
○ Static instances of shipping service configured on load-balancer
○ Rolling manual / auto deployments to ensure uptime
○ API versioning

● Transaction module -(HTTP)--> ShippingService Load Balancer.
● Intra-process → Inter-process call.
● They make their independent service a partial success!

(deployments are still in same stack and static, scaling is still manual)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

We want a taste of it too!
● More services!

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

What does that change?
● First and foremost: instead of 3, (n * 3 + n) servers/vms!
● Baseline costs go up
● Monitoring and maintenance costs go up
● Inter-process communication issues on rise
● Ops under pressure
● Deployments become difficult, diverse and risky

○ ...and so less frequent, so do releases
○ ...and so does development. (back to square one)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Principles of Software Evolution
(Remember evolution of 1-tier to 3-tier)

● Extract Common: group common, break out different
● Software is all about automation
● We worry less about hardware: developer cycles vs CPU cycles
● Our problems are manifestations of older problems, and so are our solutions
● Simplest solution are best
● We are never satisfied

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Solutions
● Too many servers running all the time

✓ Reduce when not needed (aka auto-scaling)

● High instances churn, how do I add them on the load balancer?
✓ automatic registration on load balancers (not discovery yet)

● Load balancer is not enough (auto-scaling and auto registration)
○ Requires a hop
○ Single point of failures in the system
○ Together demand that IPs change, static IPs / DNS won’t work anymore.
○ We need a way to map service name to IP.
✓ Hence automatic registration to a central server with service name and instance IP.
✓ Anyone can ask for an address of a service they want! (Aka service discovery)

● Too many servers, they go down all the time
○ Auto restart, ensured minimum instances, Aka self-healing.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Too many servers to deploy
✓ Automate rolling deployments (aka auto deployments, this is not CD ;))

● Too many hardware instances to provision & configure
○ Different technologies, different runtime requirements: configuration and infrastructure
✓ Service specific VM images, infrastructure automation, infra as code (not docker, yet)

● Too many application instances to (re)configure
○ One change to be done in monolith is now ‘n’ changes in ‘n’ places.
✓ External configuration, and a central configuration service and refresh mechanism

● Inter-service communication issues
○ Random failures (apparently), networking issues, load issues, availability issues lead to in

general unpredictability.
○ Cascading failures (believe me, these are the worst)
✓ Disable calls when a service misbehaves (aka circuit breaker)

Solutions

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Difficulties in tracing and tracking individual requests
○ Earlier a request could be traced by thread-ids being logged.
✓ Now you need a global, request identification, distributed tracing for better visibility.

● Too many REST calls to make to different IPs, need better clients
✓ ‘Service discovery aware’ rest clients.

● Too many places where retry was required
✓ ‘Service discovery aware’ rest clients aware retriable functionality.

● Too many tools to configure at service boundaries:
✓ Above integrated into circuit breakers.

● Servers replaced, cannot have state.
✓ Externalized sessions and stateless APIs.

Solutions

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Solutions
● With all this central load balancers make less and less sense

○ Caller:
■ Knows where the service and discovery server is
■ Knows Discovery knows which instance is closer
■ Decides the handling on failure, fallbacks, caches etc.

○ Central load balancer now seems like an unnecessary hop and moving part.
✓ Client side load balancing.

● Too many places to monitor for failures
✓ Central health check and service monitoring systems.

● It is impossible to find the instance on which the error occurred.
✓ Central log repositories and searches.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Too many places to authenticate and authorize users at (when multiple entry

points)
✓ Central authentication systems

● Too many places to authenticate and authorize services at
✓ Secrets management systems

● Does our data center machines have this
○ Fancy ability to spin up and shut down, this scaling thing?
○ Can we incorporate easily with all the networking things we need?
○ Ohh it is just too many servers to look after
✓ Private / public clouds and managed services

Solutions

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● But then what do we do with all the money we put in buying this data center?
✓ We can use it, Hybrid cloud setups!

Are things getting clearer now? Well this isn’t over yet!

Solutions

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● We are faster
○ there is just too much to test
○ we need ‘moar’ speed in validation and packaging.
✓ Automated testing and Continuous Integration (CI)

● Can we move even faster now that we have:
○ Automation everywhere
○ High uptime ensured by self-healing services
○ Easy reversals enabled through infra and deployment versioning
✓ Yes, Continuous Delivery (CD)

● More speed? Now that we are confident it works?
✓ Continuous Deployment, if ecosystem favours.

Solutions, allied problems

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Costs are still high

○ Many VMs are still live

○ Not all fully utilize their RAM/CPU at idle

● Development difficulties
○ Too much to set up locally

○ Dev machines loaded

○ So many dependencies to manage

○ How to ensure consistency in environments?

Solutions, allied problems

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Deployment difficulties. Each service has:

○ Specific infra requirements

○ Own specific deployment steps and dependencies

○ Central SRE / Ops overloaded, changes pushed back.

○ Devs feel limited in not having the control over infra (DevOps anyone?)

● For all 3 above:

✓ Containerize the stack

○ Let developers create the ‘VM’ images, manage what goes in it

○ There is a consistent API to start and stop any service

○ So, it is standardized now?! Well, then why do we need OPs, infra? Use:

✓ Container Orchestration Frameworks, like Kubernetes

Solutions, allied problems

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

The Monolith becomes

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Are we there yet?

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Solutions and allied problems
● Inter team clashes
● Push backs to changes
● Difference in priorities and goals of teams
● Scaling limitations

● Conway’s law: Software architecture reflects the organization’s
communication structure.

● Organizational restructuring

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Solutions and allied problems
● Agility
● Unit Tests, Integration Tests, System Tests, Contract Tests
● Automated Testing End-To-End testing
● CI
● CD
● DevOps
● NoOps

● We need these all!

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Are we there yet?

Probably..

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Why?

● Do you understand your business good enough to be able to clearly segregate

your application components into individual services? (Functional segregation)

● Is the application large enough to require micro services?

● Is the team large enough to own up individual components?

● Is the complexity worth the benefits you seek?

● Is your organization ready to support your architecture?

● Anything else you would like to add?

Before Microservices, Ask Yourself

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Disclaimers
● Some things were generalised and (over)simplified

● Retrospectively, things always seem obvious and natural

● Some stories were made up

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

}

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Event Sourcing.

Eventual Consistency and microservices.

Todos to self-discovery:

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

