Practical Git

Introduction (And Beyond)

O @nikhilwanpal | ] NikhilWWanpa



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

. ProjectDoc.docx

. ProjectDoc v2.docx

. ProjectDoc v2 final.docx

. ProjectDoc v2 final 2.docx

. ProjectDoc v2 final 2 -seriously.docx

. ProjectDoc v2 final 2 -seriously really final.docx

. ProjectDoc v2 final 2 -seriously really final - I swear I am not modifying the file again.docx

. ProjectDoc v2 final 2 -seriously really final - I swear I am not modifying the file again - EVER.docx

Version Control

(The non-developer way)

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

proiecm{‘ “With review comments from Guide”
ProjectDoc “Modifications based on new
/ Y comments”
.
ProjectDoc \ . o
/\ ProjectDec Changes for team presentation
o \ ~
ProjectDoc ProjectDoc ProjectDoc

“Changes for presentation at
conference, for novice audience”

“‘Merged changes: team and
ProjectDoc conference”

“Cosmetic changes”

ProjectDoc

Version Control

(The developer way)

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Version Control Systems

Types:

1. Local
2. Centralized (CVCS): svn, cvs
3. Distributed (DVCS): git, mercurial

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Once upon a time..

There was a Linus

Then came Linux

Then came the interest of the community and contributor boom

Contributors distributed through time and space.

The central person would become overworked, loaded.

Need for distributed management.

(skipping some events..) Birth of Git: To handle far complex, large and distributed
teams. (than us)

e ..and then, came the interest of the community and contributor boom... (git
uses git to version control git!)

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

s wwbh -~

© N OO

CVCS

Central Server, that manages the truth.
Clients do checkout snapshots.

Weak clients

Server needs tending to: backups,
maintenance etc.

File locking / conflict handling.

Constant connection required.

Defined workflow.

Restricts free development of open source
projects.

Vs

oonh =

o o

DVCS

Distributed, no single location of truth.
All clients are mirrors; servers; truth.
Fully functional clients

Self maintaining, recoverable from mirrors;
(of course should have backups.)
No Locking; conflicts are less frequent.

Connection required only when sharing.
Highly flexible workflows possible. With
subteams and sharing and merging before
final publishing.

Promotes Open Source development.

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

UnderStanding Git (coming from a world of CVCS)

It is distributed: Things appear to be two step.

Think of ‘torrents’, P2P networks. (It's not a P2P and won’t help you download GOT!!)
Like installing your own SVN server that can communicate with other SVNs.
Branching is dirt cheap; not a task.

Merging is easy; not an activity. (If you know what you are merging!)

It's not difficult, just different. (unless our glass is full)

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Git Hosting

GitHub Vs GitLab Vs BitBucket

Git : GitHub = water : packaged drinking water

All hosting providers add proprietary features to git, ex: pull request.
Hosting providers do, can provide other VCS as well.

e Git does not need hosting, or server or background process
e Git can work with a shared folder as remote
e Hosting makes corporate workflows easy

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Your Git

e Install Git

e Setup

git config --global user.name "Nikhil Wanpal"
git config --global user.email "nikhil@dontwasteyourtimereading.com"

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Your Git, Your First Repository

In a new directory: practical-git/1/

git init

Create file, git add, git commit -m
Modify file, git add, git commit -m

git log

Modify file, git add, git commit --amend
Modify file, git add

git reset

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Your Git, Your First Repository with a server

In a directory: practical-git/central-repo.git/
e git init --bare
In a directory: practical-git/personal-repo/

git clone ../central-repo.git/ .
git add

git commit -m

git push

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Your Git, Your First Repository with a server and a
dual personality

In a directory: practical-git/central-repo.git/
e git init --bare
In a directory: practical-git/personal-repo/

e git clone ../central-repo.git/ .
e Create file, git add, git commit -m
e (it push

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Your Git, Your First Repository with a server and a
dual personality (v1)

In a directory: practical-git/colleague-repo/

e git clone ../central-repo.git/ .
e Surprise!

e Create file, git add, git commit -m

e (it push

In a directory: practical-git/colleague-repo/

e (it pull

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Branches and Tags

Projectboc . reviewComments

ProjectDoc

ProjectDoc =-._

ProjectDoc

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

V1.1 Branches

Threads of development

String of thought

Series of changes with similar purpose
A diversion

git branch myFirstBranch
Create a file, git add, git commit -m, git push

git checkout master

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

V1.2 Merges

e Tie the threads together
e Bring together different thoughts and ideas
e Achieve the purpose of your branch

git merge myFirstBranch ‘F4[J<i::::FA::iﬁ:::>k

e Git’s intelligent merge
git checkout myFirstBranch, modify line 1, push

git checkout master, modify line 2, merge

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

V1.3 Conflicts

e \What happens when two different lines of thought try to merge?
e Branches need a judge!
e You!

git checkout myFirstBranch, modify line 2, push
git checkout master, modify line 2, merge!

e Now try that across repositories, you have 2.

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

V1.4 Rebase

e Rewriting history
(after same steps as a conflict..)

git pull origin master --rebase

R

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

What is a:

Git commits storage: a rooted, Directed Acyclic Graph of patches.

Patch: the delta between two commits. (or more)

Staging/Index: Selecting relevant changes for commit.

Commit: The delta store in git filesystem with name as the SHA.

Branch HEAD: A pointer in the graph for ease of access.

Branch: The path from root to branch head.

Stash: Stash aside the state for now.

HEAD: a variable, a pointer to current pointer of the current branch.
Detached HEAD: state of repository when a commit is checked-out, which is
not pointed to by any of the HEADs

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

What is a:

Merge: Delta from the ‘common ancestor’ added together.

Fast - Forward Merge: Pointer updated to the latest head.

Merge commit: the commit that identifies a merge.

Rebase: Rewrite the history to change the branching point, and reapplying
the changes over. No more the same commits. (creating new history is that easy..!)
Reset: undo, hard vs soft.

e Remote: The different repositories, tracked branches, not same branches.

e Pull: fetch + merge (rebase!)

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Git Folders:

e HEAD: pointer to current branch’s head
e index: staging info

e refs: commit objects. Basically branch data.
e oObjects: blobs of files and tree objects.

Git Objects:

e blobs: or git objects contain the contents of checked files. Key-value file
storage.

e trees: pointers to blobs by flenames and other trees.

e Commit: top level tree, user, additional info regarding commit, message etc.

e Packfiles and git gc | auto gc.

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

To Branch or not to branch..

What is a branch? (There is no such thing as a branch! It's the path from the head to root,
traversed through ‘parent’ pointers.)

Git References:

Branches
Tags
HEAD
Remotes

© O O O

Are you coming back to it? Then you need a branch!

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Git Flow

A branching model suggested by Vincent Driessen in his blog.

develop and master: The only long lived branches.

Features, Releases and Hot-fixes
Convention: feature/; release/ and hotfix/
Life-cycle of:

o Feature: develop — develop

o Release: develop — (master + tag | develop)
o HotFix: master — (develop + master(tag?))

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal
http://nvie.com/posts/a-successful-git-branching-model/

Git Shortcuts

Bash / shell aliases:

alias
alias
alias
alias

alias

gs="'git
ga='git
gc="git
gb="git
go="git

status
add '

commit'
branch '

checkout

Git aliases:
e git config --global alias.st status
e git config --global alias.a add
e git config --global alias.ci commit
e git config --global alias.br branch
e git config --global alias.co checkout

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

Git Best Practices

e Commit often (every 30 mins), push once. Clean-up before push.
Prefer to code on new branch locally, never push such branches. Share
among developers but not to central.

One change per commit. Not more.

Describe the commit well.

Consider rebase before push or pull, follow up with a --no-ff commit.
Don’t break the development tree.

Review merges. Build and fix post a merge before push.

Avoid force-delete (-D) when deleting branches.

Consider using shortcuts/aliases.

NEVER rebase pushed commits.

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

O @nikhilwanpal | ff NikhilWWanpal



https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

