
@nikhilwanpal | NikhilWanpal

Practical Git
Introduction (And Beyond)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Version Control
(The non-developer way)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Version Control
(The developer way)

“With review comments from Guide”

“Modifications based on new
comments”

“Changes for team presentation”

“Changes for presentation at
conference, for novice audience”

“Merged changes: team and
conference”

“Cosmetic changes”

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Version Control Systems
Types:

1. Local
2. Centralized (CVCS): svn, cvs
3. Distributed (DVCS): git, mercurial

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Once upon a time..
● There was a Linus
● Then came Linux
● Then came the interest of the community and contributor boom
● Contributors distributed through time and space.
● The central person would become overworked, loaded.
● Need for distributed management.
● (skipping some events..) Birth of Git: To handle far complex, large and distributed

teams. (than us)
● ..and then, came the interest of the community and contributor boom… (git

uses git to version control git!)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

CVCS Vs DVCS
1. Central Server, that manages the truth.
2. Clients do checkout snapshots.
3. Weak clients
4. Server needs tending to: backups,

maintenance etc.
5. File locking / conflict handling.
6. Constant connection required.
7. Defined workflow.
8. Restricts free development of open source

projects.

1. Distributed, no single location of truth.
2. All clients are mirrors; servers; truth.
3. Fully functional clients
4. Self maintaining, recoverable from mirrors;

(of course should have backups.)
5. No Locking; conflicts are less frequent.
6. Connection required only when sharing.
7. Highly flexible workflows possible. With

subteams and sharing and merging before
final publishing.

8. Promotes Open Source development.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Understanding Git (coming from a world of CVCS)

● It is distributed: Things appear to be two step.
● Think of ‘torrents’, P2P networks. (It’s not a P2P and won’t help you download GOT!!)
● Like installing your own SVN server that can communicate with other SVNs.
● Branching is dirt cheap; not a task.
● Merging is easy; not an activity. (If you know what you are merging!)
● It’s not difficult, just different. (unless our glass is full)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Git Hosting
● GitHub Vs GitLab Vs BitBucket
● Git : GitHub = water : packaged drinking water
● All hosting providers add proprietary features to git, ex: pull request.
● Hosting providers do, can provide other VCS as well.

● Git does not need hosting, or server or background process
● Git can work with a shared folder as remote
● Hosting makes corporate workflows easy

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Your Git
● Install Git

● Setup

git config --global user.name "Nikhil Wanpal"

git config --global user.email "nikhil@dontwasteyourtimereading.com"

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Your Git, Your First Repository
In a new directory: practical-git/1/

● git init
● Create file, git add, git commit -m
● Modify file, git add, git commit -m
● git log
● Modify file, git add, git commit --amend
● Modify file, git add
● git reset

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Your Git, Your First Repository with a server
In a directory: practical-git/central-repo.git/

● git init --bare

In a directory: practical-git/personal-repo/

● git clone ../central-repo.git/ .

● git add
● git commit -m
● git push

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Your Git, Your First Repository with a server and a
dual personality
In a directory: practical-git/central-repo.git/

● git init --bare

In a directory: practical-git/personal-repo/

● git clone ../central-repo.git/ .

● Create file, git add, git commit -m
● git push

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Your Git, Your First Repository with a server and a
dual personality (v1)
In a directory: practical-git/colleague-repo/

● git clone ../central-repo.git/ .

● Surprise!
● Create file, git add, git commit -m
● git push

In a directory: practical-git/colleague-repo/

● git pull

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

reviewComments

presentation4Team

V1

V1.1

Branches and Tags

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

● Threads of development
● String of thought
● Series of changes with similar purpose
● A diversion

git branch myFirstBranch

● Create a file, git add, git commit -m, git push

git checkout master

V1.1 Branches

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

V1.2 Merges

● Tie the threads together
● Bring together different thoughts and ideas
● Achieve the purpose of your branch

git merge myFirstBranch

● Git’s intelligent merge

git checkout myFirstBranch, modify line 1, push

git checkout master, modify line 2, merge

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

V1.3 Conflicts

● What happens when two different lines of thought try to merge?
● Branches need a judge!
● You!

git checkout myFirstBranch, modify line 2, push

git checkout master, modify line 2, merge!

● Now try that across repositories, you have 2.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

V1.4 Rebase

● Rewriting history

(after same steps as a conflict..)

git pull origin master --rebase

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

What is a:
● Git commits storage: a rooted, Directed Acyclic Graph of patches.
● Patch: the delta between two commits. (or more)
● Staging/Index: Selecting relevant changes for commit.
● Commit: The delta store in git filesystem with name as the SHA.
● Branch HEAD: A pointer in the graph for ease of access.
● Branch: The path from root to branch head.
● Stash: Stash aside the state for now.
● HEAD: a variable, a pointer to current pointer of the current branch.
● Detached HEAD: state of repository when a commit is checked-out, which is

not pointed to by any of the HEADs

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

What is a:
● Merge: Delta from the ‘common ancestor’ added together.
● Fast - Forward Merge: Pointer updated to the latest head.
● Merge commit: the commit that identifies a merge.
● Rebase: Rewrite the history to change the branching point, and reapplying

the changes over. No more the same commits. (creating new history is that easy..!)
● Reset: undo, hard vs soft.
● Remote: The different repositories, tracked branches, not same branches.
● Pull: fetch + merge (rebase!)

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Git Folders:

● HEAD: pointer to current branch’s head
● index: staging info
● refs: commit objects. Basically branch data.
● objects: blobs of files and tree objects.

Git Objects:

● blobs: or git objects contain the contents of checked files. Key-value file
storage.

● trees: pointers to blobs by filenames and other trees.
● Commit: top level tree, user, additional info regarding commit, message etc.
● Packfiles and git gc | auto gc.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

To Branch or not to branch..
What is a branch? (There is no such thing as a branch! It’s the path from the head to root,
traversed through ‘parent’ pointers.)

Git References:

○ Branches
○ Tags
○ HEAD
○ Remotes

Are you coming back to it? Then you need a branch!

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Git Flow
● A branching model suggested by Vincent Driessen in his blog.
● develop and master: The only long lived branches.
● Features, Releases and Hot-fixes
● Convention: feature/; release/ and hotfix/
● Life-cycle of:

○ Feature: develop → develop
○ Release: develop → (master + tag | develop)
○ HotFix: master → (develop + master(tag?))

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal
http://nvie.com/posts/a-successful-git-branching-model/

@nikhilwanpal | NikhilWanpal

Git Shortcuts

Bash / shell aliases:

● alias gs='git status '

● alias ga='git add '

● alias gc='git commit'

● alias gb='git branch '

● alias go='git checkout '

Git aliases:

● git config --global alias.st status

● git config --global alias.a add

● git config --global alias.ci commit

● git config --global alias.br branch

● git config --global alias.co checkout

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

Git Best Practices
● Commit often (every 30 mins), push once. Clean-up before push.
● Prefer to code on new branch locally, never push such branches. Share

among developers but not to central.
● One change per commit. Not more.
● Describe the commit well.
● Consider rebase before push or pull, follow up with a --no-ff commit.
● Don’t break the development tree.
● Review merges. Build and fix post a merge before push.
● Avoid force-delete (-D) when deleting branches.
● Consider using shortcuts/aliases.
● NEVER rebase pushed commits.

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

@nikhilwanpal | NikhilWanpal

}

https://www.linkedin.com/in/nikhilwanpal/
https://twitter.com/nikhilwanpal
https://in.linkedin.com/in/nikhilwanpal

